Weighted inequalities for some one-sided operators
نویسندگان
چکیده
منابع مشابه
Weighted inequalities for commutators of one-sided singular integrals
We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calderón-Zygmund kernel with support in (−∞, 0)) with BMO functions. We give the one-sided version of the results in [C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756] and [C. Pé...
متن کاملWeighted Inequalities for Integral Operators with Some Homogeneous Kernels
In this paper we study integral operators of the form Tf(x) = |x − a1y| −α1 . . . |x − amy| mf(y) dy, α1 + . . . + αm = n. We obtain the L (w) boundedness for them, and a weighted (1, 1) inequality for weights w in Ap satisfying that there exists c > 1 such that w(aix) 6 cw(x) for a.e. x ∈ n , 1 6 i 6 m. Moreover, we prove ‖Tf‖BMO 6 c‖f‖∞ for a wide family of functions f ∈ L( ).
متن کاملSome weighted inequalities for Hausdorff operators and commutators
In this paper, we consider the problem of boundedness of Hausdorff operator on weighted central Morrey spaces. In particular, we obtain sharp bounds for Hausdorff operators on power weighted central Morrey spaces. Analogous results for the commutators of Hausdorff operators when the symbol functions belong to weighted central-BMO spaces are obtained as well.
متن کاملOn Some Weighted Norm Inequalities for Littlewood–paley Operators
It is shown that the Lw,1< p<∞, operator norms of Littlewood–Paley operators are bounded by a multiple of ‖w‖ Ap , where γp = max{1, p/2} 1 p−1 . This improves previously known bounds for all p > 2. As a corollary, a new estimate in terms of ‖w‖Ap is obtained for the class of Calderón–Zygmund singular integrals commuting with dilations.
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1996
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-96-03089-4